Архитектура Unix

         

2.2.2 Процессы



2.2.2 Процессы

В этом разделе мы рассмотрим более подробно подсистему управления процессами. Даются разъяснения по поводу структуры процесса и некоторых информационных структур, используемых при распределении памяти под процессы. Затем дается предварительный обзор диаграммы состояния процессов и затрагиваются различные вопросы, связанные с переходами из одного состояния в другое.

Процессом называется последовательность операций при выполнении программы, которые представляют собой наборы байтов, интерпретируемые центральным процессором как машинные инструкции (т.н. "текст"), данные и стековые структуры. Создается впечатление, что одновременно выполняется множество процессов, поскольку их выполнение планируется ядром, и, кроме того, несколько процессов могут быть экземплярами одной программы. Выполнение процесса заключается в точном следовании набору инструкций, который является замкнутым и не передает управление набору инструкций другого процесса; он считывает и записывает информацию в раздел данных и в стек, но ему недоступны данные и стеки других процессов. Одни процессы взаимодействуют с другими процессами и с остальным миром посредством обращений к операционной системе.

С практической точки зрения процесс в системе UNIX является объектом, создаваемым в результате выполнения системной операции fork. Каждый процесс, за исключением нулевого, порождается в результате запуска другим процессом операции fork. Процесс, запустивший операцию fork, называется родительским, а вновь созданный процесс - порожденным. Каждый процесс имеет одного родителя, но может породить много процессов. Ядро системы идентифицирует каждый процесс по его номеру, который называется идентификатором процесса (PID). Нулевой процесс является особенным процессом, который создается "вручную" в результате загрузки системы; после порождения нового процесса (процесс 1) нулевой процесс становится процессом подкачки. Процесс 1, известный под именем init, является предком любого другого процесса в системе и связан с каждым процессом особым образом, описываемым в главе 7.

Пользователь, транслируя исходный текст программы, создает исполняемый файл, который состоит из нескольких частей:

  • набора "заголовков", описывающих атрибуты файла,
  • текста программы,
  • представления на машинном языке данных, имеющих начальные значения при запуске программы на выполнение, и указания на то, сколько пространства памяти ядро системы выделит под неинициализированные данные, так называемые bss (*) (ядро устанавливает их в 0 в момент запуска),
  • других секций, таких как информация символических таблиц.

Для программы, приведенной на Рисунке 1.3, текст исполняемого файла представляет собой сгенерированный код для функций main и copy, к определенным данным относится переменная version (вставленная в программу для того, чтобы в последней имелись некоторые определенные данные), а к неопределенным - массив buffer. Компилятор с языка Си для системы версии V создает отдельно текстовую секцию по умолчанию, но не исключается возможность включения инструкций программы и в секцию данных, как в предыдущих версиях системы.

Ядро загружает исполняемый файл в память при выполнении системной операции exec, при этом загруженный процесс состоит по меньшей мере из трех частей, так называемых областей: текста, данных и стека. Области текста и данных корреспондируют с секциями текста и bss-данных исполняемого файла, а область стека создается автоматически и ее размер динамически устанавливается ядром системы во время выполнения. Стек состоит из логических записей активации, помещаемых в стек при вызове функции и выталкиваемых из стека при возврате управления в вызвавшую процедуру; специальный регистр, именуемый указателем вершины стека, показывает текущую глубину стека. Запись активации включает параметры передаваемые функции, ее локальные переменные, а также данные, необходимые для восстановления предыдущей записи активации, в том числе значения счетчика команд и указателя вершины стека в момент вызова функции. Текст программы включает последовательности команд, управляющие увеличением стека, а ядро системы выделяет, если нужно, место под стек. В программе на Рисунке 1.3 параметры argc и argv, а также переменные fdold и fdnew, содержащиеся в вызове функции main, помещаются в стек, как только встретилось обращение к функции main (один раз в каждой программе, по условию), так же и параметры old и new и переменная count, содержащиеся в вызове функции copy, помещаются в стек в момент обращения к указанной функции.



Содержание раздела